


I 

! 
1 
I 
! 
I 
I 
! 

I 
I 
I 

i 

I 

I 

NASA 
Technica I 
Paper 
2632 

1986 

Nnsn 
National Aeronautlcs 
and Space Admtnlstratlon 

Scientific and Technical 
Information Branch 

Theory for Computing the 
Field Scattered From a 
Smooth Inflected Surface 

Raymond L. Barger 
Langley Research Center 
Hampton, Virginia 

Allen K. Dominek 
Ohio State University 
Columbus, Ohio 



Summary 
A theory is described for computing the reflected or scattered field from a smooth body 

with inflection points. These inflections occur in certain directions at each surface point for 
which the total (Gaussian) curvature is zero or negative. For surface illumination in one 
of these critical directions, the usual reflection formulas obtained by the high-frequency 
approximation are inapplicable, and a shadow zone exists in the reflected field. Scattering 
into the shadow zone is treated, as well as specular reflection. This theory should have a 
variety of applications such as for certain optics problems, computer graphics modelling of 
three-dimensional shapes, and the design and analysis of specialized microwave reflector 
antennas. 

Introduction 
When a wave is incident on a smooth surface, the reflected field can usually be computed, 

in the high-frequency approximation, provided that the curvature distribution of the surface 
in the vicinity of the reflection point is known. For the monostatic case (receiver coincident 
with source), the two principal curvatures are required. For the bistatic case, the curvature 
in the direction of the incidence plane is required as well as the curvature in the orthogonal 
direction. If one of these curvatures is zero, the usual formula is inapplicable. This 
problem is caused by the vanishing of the quadratic term in the local phase distribution 
function. The next higher order nonvanishing term must be included in the surface current 
integration to obtain the high-frequency approximation for the scattered field. In this 
analysis, it is assumed that this term is the cubic term. 

A special case of inflection point scattering has been treated in reference 1. The analysis 
of reference 1 is limited to reflection from bodies of revolution in a system configured in 
such a way that the body surface equation is expressed in a coordinate system whose origin 
is located at the ray source. 

Such a restricted analysis cannot be applied to more general configurations. For a body 
of revolution, all the required surface geometric parameters are readily obtained from 
the equation of the meridian line, but for more general surfaces this simplification is not 
available. Even for an axisymmetric surface, it would not be a trivial matter to adapt the 
analysis of reference 1 to the situation in which the body is illuminated from an off-axis 
source, especially if, for the bistatic case, the incidence reflection plane does not intersect 
the body axis. 

The present analysis is not restricted to axisymmetric shapes or to  a special coordinate 
system. However, the analysis is limited to the far-field condition, primarily for clarity 
in presentation of the concepts. Modification of the analysis to account for near-field 
conditions should be fairly straightforward. 

Symbols 

A ,  Bl a,  b parameters defined by equations (37) 
through (40) 

Ai[ 1 Airy function 

C proportionality constant used in derivation 
of equation (7) 

E electric field vector 

E component of E 

E ,  F, G metric coefficients evaluated at ro 



curvature parameters evaluated at ro 

unit base vector 

unit vector with direction of vector projec- 
tion of Is  onto tangent plane 

unit vector t I  x Ii (see fig. 3) 

unit vector in scattering plane orthogonal to  
I s  (see fig. 3) 

h 

A 

A 

h 

= N x  6, 

unit vector orthogonal to incidence plane 

unit vector orthogonal to scattering plane 

magnetic field vector 

component of H 

ray direction vector 

direction of Is  - Ii 

vector projection of I; onto tangent plane 

projection of surface current field onto 
polarization plane of scattered ray 

component of Jp 

A A  

h 

=J-1 
wave number 

magnitude 

local surface normal direction vector 

projection operators defined by equa- 
tions (50) and (51) 

rotation matrix 

distance from ro in direction Is 

surface vector 

point of ray incidence on surface 

surface area 

distance along arc on surface 

variable defined by equation (42) 

independent surface variables 

local distance of surface from tangent plane 
at ro 

local surface variable, varying in t 
direction, respectively 

A 

I Or 211 



8 angle of incidence 

8.3 scattering angle 

8* 

K normal curvature of surface 

A -  

angle between ?a and E, cos@ = N .  la 

x direction of surface arc at ro as indicated by 
dvldu on arc 

P permeability 

phase 

angle between Z T ~  and 2 

angle between l a  and 2 

I1 4.9 
h 

II 4 1 1  
h 

angle between l a  and 41 
w circular frequency 

Subscripts: 

i incidence 

S scattering 

8 

IO 1 

component in direction defined by intersec- 
tion of incident plane with plane normal to 
incident ray 

partial differentiation with respect to u, v, E ,  
and q ,  respectively 

parallel to or orthogonal to  incidence plane, 
respectively 

Reflection Shadows Created by Surface Inflection 
Figure 1 shows the shape of a body of revolution whose meridian line contains two 

inflection points. Arrows indicating the incident beam direction and the distribution of 
reflection directions demonstrate the existence of a reflection shadow region both for the 
monostatic case (fig. l(a)) and for the bistatic case (fig. l(b)).  

Figure 2 shows the distribution of specular directions for this body. It is seen that when 
the incident ray direction is near the horizontal, there is only one specular point. When 
it is near vertical, there are three specular points. These two regions are separated by the 
inflection points. 

These considerations apply, for purposes of illustration, to  the axisymmetric shape 
illustrated in figure 1. The following analysis is not limited to axisymmetric shapes, 
however, but applies to arbitrary smooth shapes that are representable as a vector function 
of two surface variables, r = r(u, v). A useful class of such surfaces is described in 
reference 2. The analysis represents, in some sense, a generalization of the analysis of 
reference 1. Another approach might be to treat the inflection condition as approximately 

reference 3. 
repPeseiii&le as a ileal cofifiuefice of ti.{G ref,&ior; p i n t s  ar,d &;&p the ana$& 2s ifi 
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Analysis 

Local Surface Geometry 

Consider a body illuminated by a plane wave propagating in direction ‘ii. The scattered 
field received by a far-field observer in direction TS is determined h primarily by the local 
surface geometry near point ro at which the surface normal N satisfies the reflection 
condition 

h 

If the surface is described as a vector function of two variables, r = r (u ,  v), then N is the 
direction of r u x  r v .  The local approximation to the surface at  ro is 

1 2 r = ro + (rU du + rv d v )  + s(ruu d v  

2 1  3 + 2ruv d u  d v  + rvv d v  ) + -(rUUU d u  

+ 3ruuv du d v  + 3ruvv d u  d v  + rvvv d v  ) 
3! 

(2) 
2 2 3 

The local shape of the surface is determined by its deviation from the tangent plane, that 
is, by the component of r - ro normal to the tangent plane, 

(34 
- 1  - 2  (r - r o ) .  N = - ( r u u .  2 N d u  + 2 r u v .  % du d v  + rVv.  % d v 2 )  + . . . 

h 

The linear terms 
r u .  N = r v .  N = 0 

since ru and rv lie in the tangent plane. Equation (3a) can now be written as 

1 2 (r - ro) . * = -(e d u 2  + 2f d u  d v  + g d v  ) 
2 

where e, f ,  and g are the curvature parameters defined as 
h 

e = ruu .  N 
h 

f = ruv . N 

g = rvv . N 
A 

The incremental arc length is given by the formula (ref. 4, p. 58) 

d s 2  = E du2  + 2 F  d u  d v  + G dv2 (4) 

Here E ,  F, and G are the metric coefficients defined as 

E = ru . ru 

F = ru . rv 

G = rv . rv 
If a direction is specified on the surface at ro by fixing the slope X = d v / d u ,  the normal 
curvature in direction X is 

( 5 )  
(e + 2fX + gX2) du2  - e + 2fX + gX2 

K A  = - 
( d s / d u ) 2  du2  E + 2FX + GX2 



i 

I 

The directions for which K A  attains its extreme values are the roots of the quadratic 
equation 

(6) 

(See ref. 4, p. 80.) These are the principal curvature directions, and they are mutually 
orthogonal (ref. 4, p. 80). The maximum and minimum values of normal curvature obtained 
by substituting these roots into equation ( 5 )  are called the principal curvatures. 

The direction X in which the incidence plane intersects the surface at ro (see fig. 3) 
can be found by projecting the incident ray vector onto the tangent plane 

I I  

I I  : This vector is proportional to ru + ruX 

h 

Ip  = c(rU + rvX ) II 
Thus, dividing the scalar products 

2 h 

I p  . ru = c(rU + ru ruXll) 

2 h 

I p  - ru = c(ru . ru + r,X ) I 1  
and solving for X yields II 

The direction A, orthogonal to X is given by the formula (ref. 4, p. 59) II 

= -  + FXll) 

-I- (,+.,,I> 

Now new local coordinates are defined by the relations 

or 
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Denote the unit base vectors 
e respectively. Thus, t varies I’ 

A, dq-X de II 
II 

dv = XI - X 

in the tangent plane in directions X and X by 2 and 

in the 2 direction and q varies in the EL direction. To 
II I’ II 

II 
be more precise, < varies along a curve formed by the intersection of the incidence plane 
with the surface, and q varies along a curve formed by the intersection of the l l ane  of 5 
and 2, with the surface. For these curves, the curvature vector at ro is in the N direction 
when the curvature is not zero. If the curvature is zero, the vector d3r/ds3 points in the 
% direction. Arc length in the 2 direction is given by II 

d s l l  = 

Similarly, in the direction, 

, / E + 2 F h  +GX2 II 
d t  

II 
X 4, II 

,/E+2FXI + GX: 
ds = drl 

II A, - X I 

Scattered Field Calculation 

According to reference 5 (p. 149), the field scattered in direction is obtained by 
integrating the physical optics surface current distribution: 

1 
I 

The phase function 

= kr(<,  q )  . (a - Ti) (13) 

is expanded first in the 2 direction, taking the E ,  7 origin at the point of incidence, to give II 
I 

In the 2 direction, the surface vector can be written, approximately, as II 

r - r o ( q )  = d s  2 +s(t)G II I1 
where < is the distance of the surface from the tangent plane. Thus, 

(15) 



I 

For simple monostatic or bistatic reflection 
n h  A 

Is - I ;  = ~ C O S O N  

Thus, for this case, the linear term is 

The dot product in the quadratic term of the phase expansion becomes 

(17) 

If rcc(E) is not identically zero, the remaining terms can be neglected, and the integration 
with respect to E can be carried out by the stationary phase approximation. 

Now, considering the term r(q). (e - in equation (14), similar considerations apply 

(184 
1 2 1  3 r (q)  = ro + r,dq + -q, d q  + - r,,, d q  + . . . 2 3! 

r(q) = ro + ds Zl + ((q)G 

where ((0) = ~ ~ ( 0 )  = 0. Thus for simple reflection, 

r, . (Ts -Ti) = o 
h 

i rVv  . (e - i';) = i,, . N cos o (20) 

These expressions can be written in terms of the original surface variables u, 21 as follows: 

(21) 
r u  + +J 

A, - x rv = ruuv  + r v q  = 
II 

Now, by definition of the curvature coefficients, 



The quadratic term in the phase function (eq. (20)), therefore, becomes 

Relations analogous to equations (21) through (25) could also be written for the variation 
in the E direction to yield I1 

or, locally near the stationary point, 

Assuming that the dominant contribution to the integral of eqi ation (12) omes from t h  
stationary point ro and removing the surface current from the integral leave the following 
integral to be evaluated: 

J J-00 J-00 

where the stationary phase approximation has been used to evaluate both integrals. 
Now, the surface current is resolved into components: 

% x H i  . t  I = (- N x HigEg) * 2,- = Hi0 sin (28b) 

(29) 
h 

t g  = 2 I x Ia 

N x H i  = Hi l t  - Hie COS 0 kI 

Equations (28) give the surface current as 

A 

(30) II 
For the reflection direction Ts, the projection of % x H i  onto the polarization plane yields 
the following components: 

(HiIEll . Eo)  to = Hi, cos6 t g  (314 
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Substituting E field components in equations (31a) arid (31b) by the relations 

and using the results together with equation (27) in equation (12) yield 

(33) 

This well-known result has been developed in this paper in this manner in order to 
demonstrate the analytical relationship of this result with that for inflection scattering 
which is given in the following section. 

Reflection at an Inflection Point 

The preceding analysis fails if either 'cl or lc vanishes, that is, if the surface is inflected II 
at ro either in the direction of the incidence"p1ane or orthogonal to it. According to 
equations (24a) and (24b) (or the equivalent equations for E variation) this means that for 
X = X  o r X = X  I' I 

e + 2 f ~ + g ~ ~  = O  (34) 

This eauation has solutions 

(35) 
9 

2 Thus, if eg - f > 0, equation (34) has no real root. The surface is convex or concave in 
all directions at ro, which is termed an elliptic point. If eg - f = 0, equation (34) has one 
real root, X = - f /g ,  and ro is a parabolic point. The surface is inflected in one direction 

2 only. If eg - f < 0, equation (35) has two real roots corresponding to two directions 
in which the surface is inflected. In this case, ro is a hyperbolic point. Directions X for 
which equation (35) is satisfied are called asymptotic directions. If a wave is incident at 
a hyperbolic point so that the incidence plane is aligned with either of the asymptotic 
directions, or is orthogonal to either of them, equation (33) fails. For a parabolic point, 
only two incidence plane directions present this problem. 

When the problem does occur, a shadow region is created in the reflected ray tube. 
This effect was mentioned in the first section and illustrated in figure 1. By differentiating 
the reflection condition (eq. (l)), 

it is seen that an extreme value of TS is attained for dI /ds  = 0 which occurs when 
dN/ds  = 0, corresponding to the inflection condition. 'l'hus, the ray reflected at the 

- 
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where relation (24c) has been used in equation (40a). 
With this notation, the integral (corresponding to eq. (27)) to be evaluated is 

j k r , .  (2-6) ds  Jm 
II -m dsI 

'The inner integral is reduced to the previous type by the simple change of variable: 

Equation (41) then yields the result 

b 
* - s  +-  SI - I 2a 

J-00 J-00 I I  

where the integrations have been evaluated by the usual formulas (ref. 6, p. 447). 
According to equations (28a) and (28b), the surface current is proportional to 

Resolving the scattering direction vector 7s into components in, and normal to, the tangent 
plane yields 

where 

,. h 

Is = sin Os 2~~ + COS Os N 

,I 

(45) 

(46) 2~~ = cos 4 s  2, + sin 4s 2 ,  L 

i o s  = - COS Os 2~~ + sin Os N 

C l S  = - sir1 &s 2 t cos 4s 2 I 

Orthonormal field directions in the polarization plane associated with the scattering 
direction TS are 

(47) 

(48) II 
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Therefore, the component of the surface current field in the polarization plane is 

h 

J, = N x Hi - (5 x Hi . T S ) T s  
= ( -Hi1  sin 4 s  - Hie cos 0 cos q6s) 21, 
- cos Os (cos &Hi, - sin dS cos QH~Q) 

where relations (32a) and (32b) have been utilized. The matrix operators Pi, Ps, and R 
are defined as follows: 

R ( (52) 
sin4s 

-sin4s  COS^, 
The operator Pi projects from the incident polarization plane to the tangent plane. The 
operator R rotates in the tangent plane from the 2 direction to the 2~~ direction aligned 
with the scattering plane. Then the operator Ps projects from the tangent plane to the 
polarization plane associated with the scattering direction ;is. With equations (50) through 
(52), equation (49) becomes 

II 

Substituting from equations (43b) and (53) into equation (12) yields the final result as 

Ai [ ] PsRPi ( 1 
X 

(3/A)lI3 (3A)lI3 E i l  
(54) 

where B,  A, b, and a are defined, respectively, by equations (37), (38), (39), and (40). If 
scattering only in the incidence-reflection plane is considered, 

sinQ* = o 
consequent 1 y, 

b = O  
and the factor e - J b  14' drops out of equation (54). In this case, the well-known inverse 
square-root dependence on the normal curvature is obtained. However, if scattering 
outside the incidence reflection plane is considered, 

' 2  

# I  e - j b 2 / 4 a  

12 



inflection point ro represents the edge of the shadow region. As was mentioned earlier, 
the field scattered into this shadow region is significant. In order to calculate it from the 
surface current integral (eq. (12)), the cubic term must be included in the expansion of 
the phase function in the inflection direction, and scattering directions different from the 
reflection direction must be considered. 

Assume that the surface is inflected at ro in the t direction. Then, in the phase 

function expansion (eq. (14)), the quadratic term vanishes. Since the reflection condition 
is no longer assumed, equation (1) is no longer applicable. Let ia denote the direction of 
Is - I; and rn denote its magnitude. Then Is - Ii can be resolved into components: 

I1 

h h h  

h 

(36) 
h h  A 

I~ - ~i = mIa = m cos e* N + cos 41kl + cos 411 211) 

Since, from equation (15), r t ( o )  = t the linear term in the phase function becomes II ' 

k r t  . ('. - Ti) de  = k m  cos 411 dsll 

k r t .  ('. -7;) de  B dsll (37b) 

(374 

or locally, 

Differentiating equation (15) three times and using equation (36) yields for the cubic 
term, 

Now, considering the phase variation in the t I  direction, equation (19) is replaced by 

dr  
k -  + (% -&) = k m c o s 4 1  

k -  . (TS - ';) = b 

dsI 

dr  
ds  I 

Equation (20) for the quadratic term is replaced by 

k m  d2r  h 

cos e* . N - -- - 
2 ds;  

k m  
2 

= -Iccose* 

(394  
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t 

c 

and an additional dependence on 'cI occurs through the parameter a. (See eqs. (40a) and 

( 4 0 W  
Furthermore, for t,he reflected ray that satisfies the reflection law (eq. (l)), 

consequent 1 y, 
c o s ~ l l  = 0 

in equation (36) and therefore, B = 0 (eqs. (37a) and (37b)). In this case, the factor 
involving the Airy function in equation (54) becomes 

Now consider the case for which the surface is inflected in the el direction. An 
analysis similar to the preceding one leads to a result like equation (54) with (, q variables 
interchanged and A difference in the physical phenomena, however, 
should be noted. For this case, the reflection shadow occurs because of the inflection in 
the 2, direction, and consequently the incidence-reflection plane is the boundary of the 
shadow region. In order to compute scattering into this shadow zone, one must treat those 
scattering directions for which b # 0, that is, for which the factor e-jb2/4a occurs in the 
field equation. For the previous case, on the other hand, one can study the diffraction into 
the shadow region for scattering directions in the incidence-reflection plane. 

replaced by IC II . 

Location of Inflection Points 

For the far-field monostatic problems, specular points are norFally located by compar- 
ing the local surface normal vector % with the reflection direction I r .  For the corresponding 
bistatic problem, fi is compared with the direction of Tr-Ti. To determine whether a specu- 
lar point is elliptic, parabolic, or hyperbolic, the sign of the total curvature (or equivalently, 
the quantity eg - f2) is required. For the general scattering problem, it is advantageous to  
know the distribution of parabolic and hyperbolic points on the surface. This distribution 
can be determined by making an orderly survey of the quantity eg = - f over the surface. 
Its zeros determine the lines of parabolic points which separate the hyperbolic regions from 
the elliptic regions. 

Figure 4 shows a surface having both elliptic and hyperbolic regions, with the line of 
parabolic points separating them. 

Concluding Remarks 
A theory has been presented for computing the reflected or scattered field from a smooth 

body with inflection points. Although the analysis was developed for electromagnetic 
waves, the results can easily be reduced to apply to the acoustic problem. Far-field 
conditions were assumed. The only restriction regarding surface geometry, other than 
its smoothness, was that it can be represented, at least locally, as a vector function of two 
variables. 

NASA Langley Research Center 
Hampton, VA 23665-5225 
August 15, 1986 

13 



References 
1. Rahnavard, Mohammad H.; and Rusch, Willard V. T.: Surface-Curvature-Induced Microwave Shadows. 

IEEE Trans. Antennas B Propag., vol. AP-30, no. 1, Jan. 1982, pp. 83-88. 
2. Barger. Raymond L.; and Adams, Mary S.: Semianalytic Modeling of Aerodynnmic Shapes. NASA 

3. Ludwig, Donald: Uniform Asymptotic Expansions at a Caustic. Comm.  Pure B A p p l .  Math., vol. XIX, 
no. 2, May 1966, pp. 215-250. 

4. Struik. Dirk J.: Differential Geometry. Addison-Wesley Pub. Co., Inc., c.1950. 
5. Silver. Samuel, ed.: Microwave Antenna Theory and Design. McGraw-Hill Book Co., Inc., 1949. 
6. Abramowitz, Milton; and Stegun, Irene A,, eds.: Handbook of Mathematical Functions With Formulas, 

Graphs, and Mathematical Tables. John Wiley & Sons, Inc., 1964. (Reprinted with corrections Dec. 
1972.) 

TP-2413, 1985. 

14 



15 



16 



t 

M 

17 



4 2  
E: 
0 a 
.e 

18 



C i  

El 
0 a 

42 

.3 

u 
0 
Qi 
E: 

60 
E: 

0 

.3 - 

.e 

3 
-5 

19 



Standard Bibliographic Page 

1. Report No. 
NASA TP-2632 

2. Government Accession No. 

7. Author(s) 

Raymond L. Barger and Allen K. Dominek 

17. Key Words (Suggested by Authors(s)) 
Electromagnetic waves 
Reflected waves 
Scattered waves 
Stationary phase 
Microwave reflection 

3. Performing Organization Name and Address 
NASA Langley Research Center 
Hampton, VA 23665-5225 

18. Distribution Statement 
Unclassified-Unlimited 

Subject Category 74 

12. Sponsoring Agency Name and Address 
National Aeronautics and Space Administration 
Washington, DC 20546-0001 

19. Security Classif.(of this report) 
Unclassified 

- - ___ .- -- 
15. Supplementary Notes 
Raymond L. Barger: Langley Research Center, Hampton, Virginia. 
Allen K. Dominek: Ohio State University, Columbus. Ohio. 

20. Security Classif.(of this page) 21. No. of Pages 22. Price 
Unclassified 20 A02 

3. Recipient’s Catalog No. 

5. Report Date 

December 1986 
6. Performing Organization Code 

505-68-91-09 
8. Performing Organization Report No. 

L-16157 
10. Work Unit No. 

11. Contract or Grant No. 

13. Type of Report and Period Covered 

Technical Paper 
14. Sponsoring Agency Code 

16. Abstract 
A theory is described for computing the reflected or scattered field from a smooth body with inflection 
points. These inflections occur in certain directions at each surface point for which the total (Gaussian) 
curvature is zero or negative. For surface illumination in one of these critical directions, the usual reflection 
formulas obtained by the high-frequency approximation are inapplicable, and a shadow zone exists in the 
reflected field. This theory 
should have a variety of applications such as for certain optics problems, computer graphics modelling of 
three-dimensional shapes, and the design and analysis of specialized microwave reflector antennas. 

Scattering into the shadow zone is treated, as well as specular reflection. 

For sale by the National Technical Information Service, Springfield, Virginia 22161 
NASA-Langley,  1986 


